在△ABC中,已知B(-2,0)、C(2,0),AD⊥BC于点D,△ABC的垂心为H,且=.(1)求点H(x,y)的轨迹G的方程;(2)已知P(-1,0)、Q(1,0),M是曲线G上的一点,那么,,能成等差数列吗?若能,求出M点的坐标;若不能,请说明理由.
假定某射手每次射击命中的概率为,且只有发子弹.该射手一旦射中目标,就停止射击,否则就一直独立地射击到子弹用完.设耗用子弹数为 求:(1)目标被击中的概率; (2)的概率分布; (3)均值.
(本题满分15分,请列式并用数字表示结果,直接写结果不得分) 从5名女同学和4名男同学中选出4人参加四场不同的演讲,分别按下列要求,各有多少种不同选法? (1)男、女同学各2名; (2)男、女同学分别至少有1名; (3)在(2)的前提下,男同学甲与女同学乙不能同时选出.
已知z为复数,z+2和均为实数,其中是虚数单位. (1)求复数z; (2)若复数在复平面上对应的点在第一象限,求实数a的取值范围.
函数的图象在处的切线方程为 (1)求函数的解析式; (2) 求函数的单调递减区间。
已知二次函数对任意实数,都有,且时,有成立,(1)证明f(2)=2;(2)若,求f(x)的表达式;⑶ 在题(2)的条件下设,若图象上的点都位于直线的上方,求实数m的取值范围.