已知:圆的直径端点是,.求证:圆的方程是.
设函数,其中.(Ⅰ)若,求在上的最小值;(Ⅱ)如果在定义域内既有极大值又有极小值,求实数的取值范围;(Ⅲ)是否存在最小的正整数,使得当时,不等式恒成立.
椭圆的离心率为,右焦点到直线的距离为,过的直线交椭圆于两点.(Ⅰ) 求椭圆的方程;(Ⅱ) 若直线交轴于,,求直线的方程.
如图,在四棱锥中,底面是菱形,,,,平面,是的中点,是的中点. (Ⅰ) 求证:∥平面;(Ⅱ)求证:平面⊥平面;(Ⅲ)求平面与平面所成的锐二面角的大小.
某食品厂为了检查甲乙两条自动包装流水线的生产情况,随即在这两条流水线上各抽取件产品作为样本称出它们的重量(单位:克),重量值落在的产品为合格品,否则为不合格品.图是甲流水线样本的频率分布直方图,表是乙流水线样本频数分布表.(Ⅰ) 若以频率作为概率,试估计从甲流水线上任取件产品,求其中合格品的件数的数学期望; (Ⅱ)从乙流水线样本的不合格品中任意取件,求其中超过合格品重量的件数的分布列;(Ⅲ)由以上统计数据完成下面列联表,并回答有多大的把握认为“产品的包装质量与两条自动包装流水线的选择有关” .
附:下面的临界值表供参考:(参考公式:,其中)
已知函数 (I)求的单调递增区间;(II)在中,三内角的对边分别为,已知,成等差数列,且,求的值.