设是实数,,试证明:对于任意在上为增函数
的外接圆半径,角的对边分别是,且 (1)求角和边长; (2)求的最大值及取得最大值时的的值,并判断此时三角形的形状.
已知函数. (1)若的解集为,求实数的值. (2)当且时,解关于的不等式.
如图,已知⊙O的半径为1,MN是⊙O的直径,过M点作⊙O的切线AM,C是AM的中点,AN交⊙O于B点,若四边形BCON是平行四边形. (Ⅰ)求AM的长; (Ⅱ)求sin∠ANC.
已知函数f(x)=alnx+(a≠0)在(0,)内有极值. (I)求实数a的取值范围; (II)若x1∈(0,),x2∈(2,+∞)且a∈[,2]时,求证:f(x1)﹣f(x2)≥ln2+.
在平面直角坐标系中,已知椭圆:的离心率,且椭圆C上一点到点Q的距离最大值为4,过点的直线交椭圆于点 (Ⅰ)求椭圆C的方程; (Ⅱ)设P为椭圆上一点,且满足(O为坐标原点),当时,求实数的取值范围.