以初速度,抛射角投掷铅球,求铅球上升的最大高度和最大投掷距离.
(本小题满分14分)如图,四棱锥的底面为正方形,侧棱底面,且,分别是线段的中点. (Ⅰ)求证://平面; (Ⅱ)求证:平面; (Ⅲ)求二面角的大小.
(本小题满分13分)在中,分别为角所对的三边,已知. (Ⅰ)求角的值; (Ⅱ)若,,求的长.
(本小题满分13分)若为集合且的子集,且满足两个条件: ①; ②对任意的,至少存在一个,使或. 则称集合组具有性质. 如图,作行列数表,定义数表中的第行第列的数为.
(Ⅰ)当时,判断下列两个集合组是否具有性质,如果是请画出所对应的表格,如果不是请说明理由; 集合组1:; 集合组2:. (Ⅱ)当时,若集合组具有性质,请先画出所对应的行3列的一个数表,再依此表格分别写出集合; (Ⅲ)当时,集合组是具有性质且所含集合个数最小的集合组,求的值及的最小值.(其中表示集合所含元素的个数)
(本小题满分14分)已知椭圆的离心率为,且椭圆上一点与椭圆的两个焦点构成的三角形周长为. (Ⅰ)求椭圆的方程; (Ⅱ)设直线与椭圆交于两点,且以为直径的圆过椭圆的右顶点, 求面积的最大值.
(本小题满分14分)已知函数,其中为自然对数的底数. (Ⅰ)当时,求曲线在处的切线与坐标轴围成的面积; (Ⅱ)若函数存在一个极大值点和一个极小值点,且极大值与极小值的积为,求的值.