(本小题满分15分)如图,已知圆O:x2+y2=2交x轴于A,B两点,曲线C是以AB为长轴,离心率为的椭圆,其右焦点为F.若点P(-1,1)为圆O上一点,连结PF,过原点O作直线PF的垂线交椭圆C的右准线l于点Q.(1)求椭圆C的标准方程;(2)证明:直线PQ与圆O相切.
已知函数. (1)设的定义域为A,求集合A; (2)判断函数在(1,+)上单调性,并用定义加以证明.
计算: (1)集合 (2)
已知椭圆的左、右两个顶点分别为、.曲线是以、两点为顶点,离心率为的双曲线.设点在第一象限且在曲线上,直线与椭圆相交于另一点. (1)求曲线的方程; (2)设点、的横坐标分别为、,证明:; (3)设与(其中为坐标原点)的面积分别为与,且,求的取值范围。
已知函数 (1)当时,求函数的单调区间; (2)函数在上是减函数,求实数a的取值范围.
已知数列是等差数列,为其前项和,,且,成等比数列; (1)求数列的通项公式; (2)设,为数列的前项和,若对一切正整数恒成立,求实数的范围.