在固定压力差(压力差为常数)下,当气体通过圆形管道时,其流量速率(单位:cm/s)与管道半径(单位:cm)的四次方成正比.(1) 写出气流速度关于管道半径的函数解析式;(2) 若气体在半径为3cm的管道中,流量速率为400cm/s,求该气体通过半径为的管道时,其流量速率的表达式;(3) 已知(2)中的气体通过的管道半径为5cm,计算该气体的流量速率.
图1是由矩形 ADEB , RtΔABC 和菱形 BFGC 组成的一个平面图形,其中 AB = 1 , BE = BF = 2 , ∠ FBC = 6 0 ∘ ,将其沿 AB , BC 折起使得 BE 与 BF 重合,连结 DG ,如图2.
(1)证明图2中的 A , C , G , D 四点共面,且平面 ABC ⊥ 平面 BCGE ;
(2)求图2中的四边形 ACGD 的面积.
ΔABC 的内角的对边分别为 a , b , c ,已知 a sin A + C 2 = b sin A .
(1)求 B ;
(2)若 ΔABC 为锐角三角形,且 c = 1 ,求 ΔABC 面积的取值范围.
为了解甲、乙两种离子在小鼠体内的残留程度,进行如下试验:将200只小鼠随机分成 A , B 两组,每组100只,其中 A 组小鼠给服甲离子溶液, B 组小鼠给服乙离子溶液.每只小鼠给服的溶液体积相同、摩尔浓度相同.经过一段时间后用某种科学方法测算出残留在小鼠体内离子的百分比.根据试验数据分别得到如下直方图:
记 C 为事件:"乙离子残留在体内的百分比不低于 5 . 5 ",根据直方图得到 P C 的估计值为 0 . 70 .
(1)求乙离子残留百分比直方图中 a , b 的值;
(2)分别估计甲、乙离子残留百分比的平均值(同一组中的数据用该组区间的中点值为代表).
已知数列 x n 满足 : x 1 = 1 , x n = x n + 1 + ln 1 + x n + 1 n ∈ N * .
证明: 当 n ∈ N * 时,
( I ) 0 < x n + 1 < x n ;
( II ) 2 x n + 1 - x n ⩽ x n x n + 1 2 ;
( III ) 1 2 n - 1 ⩽ x n ⩽ 1 2 n - 2 .
如图,已知抛物线 x 2 = y , 点 A - 1 2 , 1 4 , B 3 2 , 9 4 , 抛物线上的点 P ( x , y )
- 1 2 < x < 3 2 . 过点 B 作直线 AP 的垂线,垂足为 Q .
( I ) 求直线 AP 斜率的取值范围;
( II ) 求 | PA | ⋅ | PQ | 的最大值。