在固定压力差(压力差为常数)下,当气体通过圆形管道时,其流量速率(单位:cm/s)与管道半径(单位:cm)的四次方成正比.(1) 写出气流速度关于管道半径的函数解析式;(2) 若气体在半径为3cm的管道中,流量速率为400cm/s,求该气体通过半径为的管道时,其流量速率的表达式;(3) 已知(2)中的气体通过的管道半径为5cm,计算该气体的流量速率.
已知以原点为中心的双曲线的一条准线方程为,离心率. (Ⅰ)求该双曲线的方程; (Ⅱ)如图,点的坐标为,是圆上的点,点在双曲线右支上,求的最小值,并求此时点的坐标;
(Ⅰ)当时,证明函数只有一个零点;(Ⅱ)若函数在区间上是减函数,求实数的取值范围
(1)求证:是等差数列;(2)求数列的前n项和Sn;(3)若一切正整数n恒成立,求实数m的取值范围
(1)设为攻关期满时获奖的攻关小组数,求的分布列及;(2)设为攻关期满时获奖的攻关小组数与没有获奖的攻关小组数之差的平方,记“函数在定义域内单调递减”为事件,求事件的概率
侧棱PA=PD=,底面ABCD为直角梯形,其中BC∥AD,AB⊥AD,AD=2AB=2BC=2,O为AD中点.(1)求证:PO⊥平面ABCD;(2)求异面直线PB与CD所成角的余弦值;(3)线段AD上是否存在点Q,使得它到平面PCD的距离为?若存在,求出的值;若不存在,请说明理由.