函数的最大值为,最小值为,求的值.
(本小题满分12分) 随机调查某社区个人,以研究这一社区居民在20:00——22:00时间段的休闲方式与性别的关系,得到下面的数据表:
(1)从这80人中按照性别进行分层抽样,抽出4人,则男女应各抽取多少人; (2)从第(1)问抽取的4位居民中随机抽取2位,恰有1男1女的概率是多少; (3)由以上数据,能否有99%的把握认为在20:00—22:00时间段的休闲方式与性别有关系. ,其中. 参考数据:
(本小题满分12分)已知命题p: 函数的定义域为,命题q:函数为增函数.若“”为真命题,“”为假命题,求实数a的取值范围.
(本小题满分10分)集合A=,B=(1)若,求实数m的取值范围;(2)当时,若,求实数m的取值范围.
(本小题满分12分)已知函数.(I)若在处取得极值,①求、的值;②存在,使得不等式成立,求的最小值;(II)当时,若在上是单调函数,求的取值范围.(参考数据)
(小题满分12分)已知函数在点处的切线的斜率为.(Ⅰ)求实数的值;(Ⅱ)证明:函数的图象恒在直线的下方(点除外);(Ⅲ)设点,当时,直线的斜率恒大于,试求实数的取值范围.