已知椭圆的左、右焦点分别是,是椭圆外的动点,满足,点是线段与该椭圆的交点,点在线段上,并且满足,.(Ⅰ)求点的轨迹的方程;(Ⅱ)试问:在点的轨迹上,是否存在点,使的面积,若存在,求的正切值;若不存在,请说明理由.
已知椭圆:的离心率,并且经过定点. (1)求椭圆的方程; (2)设为椭圆的左右顶点,为直线上的一动点(点不在x轴上),连交椭圆于点,连并延长交椭圆于点,试问是否存在,使得成立,若存在,求出的值;若不存在,说明理由.
如图,已知四棱锥,底面为菱形,平面,,分别是的中点. (1)证明:; (2)若,求二面角的余弦值.
已知等差数列的各项均为正数,,其前项和为,为等比数列, ,且. (1)求与; (2)若对任意正整数和任意恒成立,求实数的取值范围.
已知函数. (1)求该函数图象的对称轴; (2)在中,角所对的边分别为,且满足,求的取值范围.
已知函数f(x)=+lnx(a>0) (1)若函数f(x)在[1,+∞)上为增函数,求实数a的取值范围; (2)当a=1时,求f(x)在[,2]上的最大值和最小值.