已知曲线上任一点到的距离减去它到轴的距离的差是,求这曲线的方程.
一个口袋中有红球3个,白球4个. (Ⅰ)从中不放回地摸球,每次摸2个,摸到的2个球中至少有1个红球则中奖,求恰好第2次中奖的概率; (Ⅱ)从中有放回地摸球,每次摸2个,摸到的2个球中至少有1个红球则中奖,连续摸4次,求中奖次数X的数学期望E(X).
在中,分别为内角对边,且. (Ⅰ)求; (Ⅱ)若,,求的值.
已知数列{an}的前n项和为Sn,且Sn=,n∈N﹡,数列{bn}满足an=4log2bn+3,n∈N﹡。 (1)求an,bn; (2)求数列{an·bn}的前n项和Tn。
若不等式kx2-2x+6k<0(k≠0)。 (1)若不等式解集是{x|x<-3或x>-2},求k的值; (2)若不等式解集是R,求k的取值。
数列满足。 (Ⅰ)若是等差数列,求其通项公式; (Ⅱ)若满足, 为的前项和,求。