已知函数,求函数的最小正周期;当时,求函数的取值范围.
分别写出下列命题的逆命题,否命题,逆否命题,并判断其真假.(1)矩形的对角线相等且互相平分;(2)正偶数不是质数.
已知函数 ()(为自然对数的底数)(1)求的极值(2)对于数列, ()① 证明:② 考察关于正整数的方程是否有解,并说明理由
已知抛物线的准线为,焦点为,圆的圆心在轴的正半轴上,且与轴相切,过原点作倾斜角为的直线,交于点,交圆于另一点,且(1)求圆和抛物线C的方程;(2)若为抛物线C上的动点,求的最小值;(3)过上的动点Q向圆作切线,切点为S,T,求证:直线ST恒过一个定点,并求该定点的坐标.
如图,正四棱柱中,,点在上且(1)证明:平面;(2)求二面角的余弦值.
已知定义在(0,+)上的函数是增函数(1)求常数的取值范围(2)过点(1,0)的直线与()的图象有交点,求该直线的斜率的取值范围