在某校教师趣味投篮比赛中,比赛规则是: 每场投6个球,至少投进4个球且最后2个球都投进者获奖;否则不获奖. 已知教师甲投进每个球的概率都是.(1)记教师甲在每场的6次投球中投进球的个数为X,求X的分布列及数学期望;(2)求教师甲在一场比赛中获奖的概率;(3)已知教师乙在某场比赛中,6个球中恰好投进了4个球,求教师乙在这场比赛中获奖的概率;教师乙在这场比赛中获奖的概率与教师甲在一场比赛中获奖的概率相等吗?
某公路段在某一时刻内监测到的车速频率分布直方图如图所示.(Ⅰ)求纵坐标中参数h的值及第三个小长方形的面积;(Ⅱ)求车速的众数v1,中位数v2的估计值;(Ⅲ)求平均车速的估计值.
袋中又大小相同的红球和白球各1个,每次任取1个,有放回地摸三次.(Ⅰ)写出所有基本事件‘(Ⅱ)求三次摸到的球恰有两次颜色相同的概率;(Ⅲ)求三次摸到的球至少有1个白球的概率.
已知数列的前项和为,数列是公比为的等比数列,是和的等比中项.(1)求数列的通项公式;(2)求数列的前项和.
在△中,已知,向量,,且.(1)求的值; (2)若点在边上,且,,求△的面积.
设向量=(sinx,sinx),=(cosx,sinx),x∈.(1)若,求x的值; (2)设函数,求的最大值.