在某校教师趣味投篮比赛中,比赛规则是: 每场投6个球,至少投进4个球且最后2个球都投进者获奖;否则不获奖. 已知教师甲投进每个球的概率都是.(1)记教师甲在每场的6次投球中投进球的个数为X,求X的分布列及数学期望;(2)求教师甲在一场比赛中获奖的概率;(3)已知教师乙在某场比赛中,6个球中恰好投进了4个球,求教师乙在这场比赛中获奖的概率;教师乙在这场比赛中获奖的概率与教师甲在一场比赛中获奖的概率相等吗?
如图,△ABC中,,点D 在BC边上,∠ADC=45°。 (1)求的大小;(2)求AD的长。
在数列中,,(),数列的前项和为。(1)证明:数列是等比数列,并求数列的通项公式;(2)求;(3)证明:。
在斜三角形中,内角的对边分别为。若。(1)证明:;(2)求的最大值。
某厂生产两型会议桌,每套会议桌需经过加工木材和上油漆两道工序才能完成。已知做一套型会议桌需要加工木材的时间分别为1小时和2小时,上油漆需要的时间分别为3小时和1小时。厂里规定:加工木材的时间每天不得超过8小时,上油漆的时间每天不得超过9小时。已知该厂生产一套型会议桌分别可获得利润2千元和3千元,试问:该厂每天应分别生产两型会议桌多少套,才能获得最大利润?最大利润是多少?
已知数列的前项和。(1)求数列的通项公式;(2)设,且数列的前项和为。若,求的最小值。