某化工企业生产某种产品,生产每件产品的成本为3元,根据市场调查,预计每件产品的出厂价为x元(7≤x≤10)时,一年的产量为(11 – x)2万件;若该企业所生产的产品能全部销售,则称该企业正常生产;但为了保护环境,用于污染治理的费用与产量成正比,比例系数为常数a (1≤a≤3). (Ⅰ)求该企业正常生产一年的利润L (x)与出厂价x的函数关系式; (Ⅱ)当每件产品的出厂价定为多少元时,企业一年的利润最大,并求最大利润.
在中,已知内角,边.设内角,面积为y. (1)若,求边AC的长; (2)求y的最大值.
已知函数. (1)求的最小正周期; (2)已知,求的值.
已知等差数列的前n项和,且, (1)求数列的通项公式; (2)设,求数列的前n项和.
设函数,其中 (1)若,求在上的最值; (2)若在定义域内既有极大值又有极小值,求实数的取值范围; (3)当时,令,试证:恒成立.
已知椭圆的两个焦点坐标分别是,并且经过点. (1)求椭圆的标准方程; (2)若斜率为的直线经过点,且与椭圆交于不同的两点,求面积的最大值.