已知:若点满足。(I)求点的轨迹方程,并说明轨迹是什么曲线?(II)求的取值范围;(III)若求上的取值范围。
设集合A为函数y=ln(-x2-2x+8)的定义域,集合B为函数y=x+的值域.求A∩B
设曲线在点处的切线斜率为,且.对一切实数,不等式恒成立(≠0).(1) 求的值;(2) 求函数的表达式;(3) 求证:>.
已知函数(e为自然对数的底数).(1)求函数的单调增区间;(2)设关于x的不等式≥的解集为M,且集合,求实数t的取值范围.
已知是内任意一点,连结并延长交对边于,,,则.这是平面几何的一个命题,其证明常常采用“面积法”: .运用类比,猜想对于空间中的四面体,存在什么类似的结论,并用“体积法”证明.
在人寿保险业中,要重视某一年龄的投保人的死亡率,经过随机抽样统计,得到某市一个投保人能活到75岁的概率为0.60,试问:(1)若有3个投保人, 求能活到75岁的投保人数的分布列; (2)3个投保人中至少有1人能活到75岁的概率.(结果精确到0.01)