(本小题满分14分) 已知函数及正整数数列. 若,且当时,有; 又,,且对任意恒成立. 数列满足:.(1) 求数列及的通项公式;(2) 求数列的前项和;(3) 证明存在,使得对任意均成立.
设函数.(I)证明:是函数在区间上递增的充分而不必要的条件;(II)若时,满足恒成立,求实数的取值范围.
某商场预计2013年1月份起前个月,顾客对某种商品的需求总量(单位:件)与的关系近似地满足:.该商品第月的进货单价(单位:元)与x的近似关系是:(1)写出今年第月的需求量件与的函数关系式;(2)该商品每件的售价为185元,若不计其他费用且每月都能满足市场需求,试问商场2013年第几月份销售该商品的月利润最大,最大月利润为多少元?
数列中,,其前n项和满足,(1)计算;(2)猜想的表达式并用数学归纳法证明。
设.(1)求的单调区间;(2)求函数在上的最值.
已知函数.(1)求函数的单调区间;(2)若直线与函数的图像有个交点,求的取值范围.