首页 / 高中数学 / 试题详细
  • 更新 2022-09-03
  • 科目 数学
  • 题型 解答题
  • 难度 较难
  • 浏览 1214

设函数f(x)对所有的实数x都满足f(x+2π)=f(x),求证:存在4个函数fi(x)(i=1,2,3,4)满足:(1)对i=1,2,3,4,fi(x)是偶函数,且对任意的实数x,有fi(x+π)=fi(x);(2)对任意的实数x,有f(x)=f1(x)+f2(x)cosx+f3(x)sinx+f4(x)sin2x

登录免费查看答案和解析

设函数f(x)对所有的实数x都满足f(x2π)f(x),求证