设函数f(x)对所有的实数x都满足f(x+2π)=f(x),求证:存在4个函数fi(x)(i=1,2,3,4)满足:(1)对i=1,2,3,4,fi(x)是偶函数,且对任意的实数x,有fi(x+π)=fi(x);(2)对任意的实数x,有f(x)=f1(x)+f2(x)cosx+f3(x)sinx+f4(x)sin2x。
在△ABC中,角A,B,C的对边分别为a,b,c,且. (1)求角C的大小; (2)求的最大值.
设函数,. (1)讨论函数的单调性; (2)若存在,使得成立,求满足上述条件的最大整数; (3)如果对任意的,都有成立,求实数的取值范围.
某出版社新出版一本高考复习用书,该书的成本为5元/本,经销过程中每本书需付给代理商m元(1≤m≤3)的劳务费,经出版社研究决定,新书投放市场后定价为元/本(9≤≤11),预计一年的销售量为万本. (1)求该出版社一年的利润(万元)与每本书的定价的函数关系式; (2)当每本书的定价为多少元时,该出版社一年的利润最大,并求出的最大值.
如图已知抛物线的焦点坐标为,过的直线交抛物线于两点,直线分别与直线:相交于两点. (1)求抛物线的方程; (2)证明△ABO与△MNO的面积之比为定值.
如图在四棱锥中,底面是边长为的正方形,侧面底面,且. (1)求证:面平面; (2)求二面角的余弦值.