(本小题满分14分)已知椭圆上的点到左右两焦点的距离之和为,离心率为.(Ⅰ)求椭圆的方程;(Ⅱ)过右焦点的直线交椭圆于两点.(1)若轴上一点满足,求直线斜率的值;(2)是否存在这样的直线,使的最大值为(其中为坐标原点)?若存在,求直线方程;若不存在,说明理由.
设单调递减数列前项和,且; (1)求的通项公式; (2)若,求前项和.
已知数列满足,; (1)求数列的通项公式; (2)求数列的前项和,并求当最大时序号的值.
在锐角中,角的对边分别是,且 (1)确定角的大小: (2)若,且,求的面积.
如图,A,B是海面上位于东西方向相距海里的两个观测点,现位于A点北偏东45°,B点北偏西60°的D点有一艘轮船发出求救信号,位于B点南偏西60°且与B点相距海里的C点的救援船立即即前往营救,其航行速度为30海里/小时,该救援船到达D点需要多长时间?
(1)已知等差数列中,,求的公差; (2)有三个数成等比数列,它们的和等于14,它们的积等于64,求该数列的公比.