已知函数是在上每一点均可导的函数,若 在时恒成立.(1)求证:函数在上是增函数;(2)求证:当时,有;(3)请将(2)问推广到一般情况,并证明你的结论.
已知无穷数列的前项和为,且满足,其中、、是常数.(1)若,,,求数列的通项公式;(2)若,,,且,求数列的前项和;(3)试探究、、满足什么条件时,数列是公比不为的等比数列.
钓鱼岛及其附属岛屿是中国固有领土,如图:点A、B、C分别表示钓鱼岛、南小岛、黄尾屿,点C在点A的北偏东47°方向,点B在点C的南偏西36°方向,点B在点A的南偏东79°方向,且A、B两点的距离约为3海里.(1)求A、C两点间的距离;(精确到0.01)(2)某一时刻,我国一渔船在A点处因故障抛锚发出求救信号.一艘R国舰艇正从点C正东10海里的点P处以18海里/小时的速度接近渔船,其航线为PCA(直线行进),而我东海某渔政船正位于点A南偏西60°方向20海里的点Q处,收到信号后赶往救助,其航线为先向正北航行8海里至点M处,再折向点A直线航行,航速为22海里/小时.渔政船能否先于R国舰艇赶到进行救助?说明理由.
行列式按第一列展开得,记函数,且的最大值是.(1)求;(2)将函数的图像向左平移个单位,再将所得图像上各点的横坐标扩大为原来的倍,纵坐标不变,得到函数的图像,求在上的值域.
已知集合,集合.(1)求集合;(2)若,求实数的取值范围.
如图,已知抛物线的焦点为F,过F的直线交抛物线于M、N两点,其准线与x轴交于K点.(1)求证:KF平分∠MKN;(2)O为坐标原点,直线MO、NO分别交准线于点P、Q,求的最小值.