如图,是抛物线的焦点,过轴上的动点作直线的垂线.(Ⅰ)求证:直线与抛物线相切;(Ⅱ)设直线与抛物线相切于点,过点作直线的垂线,垂足为,求线段的长度以及动点的轨迹方程.
(本小题满分14分) 如图所示的长方体中,底面是边长为的正方形,为与的交点,,是线段的中点. (1)求证:平面; (2)求三棱锥D1-ABC的体积.
(本小题满分14分) 通过随机询问某校110名高中学生在购买食物时是否看营养说明,得到如下的列联表: (1)从这50名女生中按是否看营养说明采取分层抽样,抽取一个容量为的样本,问样本中看与不看营养说明的女生各有多少名? (2) 从(1)中的5名女生样本中随机选取两名作深度访谈, 求选到看与不看营养说明的女生各一名的概率; (3)根据以上列联表,问有多大把握认为“性别与在购买食物时看营养说明”有关?
(本小题满分12分) 已知数列是一个等差数列,且,.(1)求的通项; (2) 求前项和;
在△ABC中,角A、B、C所对的边分别为a、b、c(其中),设向量,,且向量为单位向量.(模为1的向量称作单位向量) (1)求∠B的大小; (2)若,求△ABC的面积.
一船由甲地逆水驶至乙地,甲、乙两地相距 S (km),水的流速为常量a(km/h),船在静水中的最大速度为b (km/h) (b>2a),已知船每小时的燃料费用(单位:元)与船在静水中的速度 v(km/h) 的平方成正比,比例系数为 k ,问: (1)船在静水中的航行速度 v 为多少时,全程燃料费用最少? (2)若水速 a =" 8.4" km/h,船在静水中的最大速度为b="25" km/h,要使全程燃料费用不超过40 k S元,求船在静水中的航行速度v 的范围。