已知中心在原点的双曲线C的右焦点为(2,0),右顶点为.(1) 求双曲线C的方程; (2) 若直线l:与双曲线C恒有两个不同的交点A和B,且(其中O为原点),求k的取值范围.
(本小题共14分)已知四棱锥的底面是菱形.,,,与交于点,,分别为,的中点.(Ⅰ)求证:∥平面;(Ⅱ)求证:平面;(Ⅲ)求直线与平面所成角的正弦值.
(本小题共13分)在△中,角,,的对边分别为,,分,且满足.(Ⅰ)求角的大小;(Ⅱ)若,求△面积的最大值.
(本小题满分14分)有个首项都是1的等差数列,设第个数列的第项为,公差为,并且成等差数列. (Ⅰ)证明 (,是的多项式),并求的值; (Ⅱ)当时,将数列分组如下: (每组数的个数构成等差数列).设前组中所有数之和为,求数列的前项和. (Ⅲ)设是不超过20的正整数,当时,对于(Ⅱ)中的,求使得不等式 成立的所有的值.
(本小题满分14分)已知,为椭圆的左、右顶点,为其右焦点,是椭圆上异于,的动点,且面积的最大值为.(Ⅰ)求椭圆的方程及离心率;(Ⅱ)直线与椭圆在点处的切线交于点,当直线绕点转动时,试判断以为直径的圆与直线的位置关系,并加以证明.
(本小题满分13分)已知函数.(Ⅰ)若曲线在点处的切线与直线垂直,求函数的单调区间;(Ⅱ)若对于都有成立,试求的取值范围;(Ⅲ)记.当时,函数在区间上有两个零点,求实数的取值范围.