已知中心在原点的双曲线C的右焦点为(2,0),右顶点为.(1) 求双曲线C的方程; (2) 若直线l:与双曲线C恒有两个不同的交点A和B,且(其中O为原点),求k的取值范围.
(本小题共12分) 在直三棱柱ABC—A1B1C1中,AA1=1,AB=2,AC=1,,D为BC的中点。 (I)求证:平面ACC1A1⊥平面BCC1B; (II)求直线DA1与平面BCC1B1所成角的大小; (III)求二面角A—DC1—C的大小。
(本小题满分12分) 甲、乙两名射手各进行一次射击,射中环数的分布列分别为:
(I)确定a、b的值,并求两人各进行一次射击,都射中10环的概率; (II)两各射手各射击一次为一轮射击,如果在某一轮射击中两人都射中10环,则射击结束,否则继续射击,但最多不超过4轮,求结束时射击轮次数的分布列及期望,并求结束时射击轮次超过2次的概率。
本小题共12分) 在中,a,b,c分别为角A,B,C所对的边,向量且 (I)求的值; (II)若b=4,的面积为的周长。
(本小题满分12分) 已知函数的两个不同的零点为
(本小题满分12分) 设关于的方程 (Ⅰ)若方程有实数解,求实数的取值范围; (Ⅱ)当方程有实数解时,讨论方程实根的个数,并求出方程的解.