已知曲线 C 1 : x = cos θ y = sin θ ( θ 为参数),曲线 C 2 : x = 2 2 t - 2 y = 2 2 t ( t 为参数).
(Ⅰ)指出 C 1 , C 2 各是什么曲线,并说明 C 1 与 C 2 公共点的个数; (Ⅱ)若把 C 1 , C 2 上各点的纵坐标都压缩为原来的一半,分别得到曲线 C 1 ` , C 2 ` ,写出 C 1 ` , C 2 ` 的参数方程, C 1 ` 与 C 2 ` 公共点的个数和 C 1 与 C 2 公共点的个数是否相同?说明你的理由.
已知双曲线的离心率为e,右顶点为A,左、右焦点分别为、,点E为右准线上的动点,的最大值为.(1)若双曲线的左焦点为,一条渐近线的方程为,求双曲线的方程;(2)求(用表示);(3)如图,如果直线l与双曲线的交点为P、Q,与两条渐近线的交点为、,O为坐标原点,求证:
已知函数在其定义域上满足.(1)函数的图象是否是中心对称图形?若是,请指出其对称中心(不证明);(2)当时,求x的取值范围;(3)若,数列满足,那么:①若,正整数N满足时,对所有适合上述条件的数列,恒成立,求最小的N;②若,求证:.
(本小题满分12分)设函数.(1)求的单调区间(2)若对所有的,均有成立,求实数的取值范围.
(本小题满分12分)在中,.(1)求的值;(2)若,且的面积为,求实数的值.
(本小题满分14分)已知函数,对于任意的,都有.(Ⅰ)求的取值范围;(Ⅱ)若,证明;(Ⅲ)在(Ⅱ)的条件下证明.