(本小题满分13分)已知函数满足(其中为在点处的导数,为常数).(1)求函数的单调区间;(2)若方程有且只有两个不等的实数根,求常数;(3)在(2)的条件下,若,求函数的图象与轴围成的封闭图形的面积.
(本小题满分为14分)已知定义域为R的函数是奇函数. (1)求a,b的值; (2)若对任意的t∈R,不等式f(t2-2t)+f(2t2-k)<0恒成立,求k的取值范围.
设定义域为的单调函数,对任意,都有,若是方程的一个解,且,则实数=.
(本小题满分14分)已知函数. (1)当时,求函数的单调区间; (2)若对于任意都有成立,求实数的取值范围; (3)若过点可作函数图象的三条不同切线,求实数的取值范围.
(本小题满分14分)设椭圆的右焦点为,直线与轴交于点,若(其中为坐标原点). (1)求椭圆的方程; (2)设是椭圆上的任意一点,为圆的任意一条直径(、为直径的两个端点),求的最大值.
(本小题满分14分)如图所示,已知正方形的边长为2,.将正方形沿对角线折起,得到三棱锥. (1)求证:平面平面; (2)若三棱锥的体积为,求的长.