如图,三条直线a、b、c两两平行,直线a、b间的距离为p,直线b、c间的距离为,A、B为直线a上两定点,且|AB|=2p,MN是在直线b上滑动的长度为2p的线段。 (1)建立适当的平面直角坐标系,求△AMN的外心C的轨迹E;(2)接上问,当△AMN的外心C在E上什么位置时,d+|BC|最小,最小值是多少?(其中d是外心C到直线c的距离).
设函数为奇函数,其图象在点处的切线与直线垂直,导函数的最小值为. (Ⅰ)求,,的值; (Ⅱ)求函数的单调递增区间,并求函数在上的最大值和最小值.
如图,在四棱椎P-ABCD中,底面ABCD是边长为的正方形,且PD=,PA=PC=. (1)求证:直线PD⊥面ABCD; (2)求二面角A-PB-D的大小.
某生物学习小组对、两种珍惜植物种子的发芽率进行实验性实验,每实验一次均种下一粒种子和一粒种子.已知、两种种子在一定条件下每粒发芽的概率分别为.假设任何两粒种子是否发芽相互之间没有影响. (Ⅰ)求3粒种子,至少有1粒未发芽的概率; (Ⅱ)求、各3粒种子,至少2粒发芽且全发芽的概率.
求函数的单调递增区间.
(10分)设和分别是先后抛掷一枚骰子得到的点数,用随机变量表示方程实根的个数(重根按一个计). (Ⅰ)求方程有实根的概率; (Ⅱ)求的分布列和数学期望; (Ⅲ)求在先后两次出现的点数中有5的条件下,方程有实根的概率.