求和Sn=12+22x+32x2+…+n2xn-1,(x≠0,n∈N*).
已知一圆经过点A(2,﹣3)和B(﹣2,﹣5),且圆心C在直线l:x﹣2y﹣3=0上,求此圆的标准方程.
在数列{an}中,已知a1=,,bn+2=3an(n∈N*). (1)求数列{an}、{bn}的通项公式; (2)设数列{cn}满足cn=an•bn,求{cn}的前n项和Sn.
如图,正方体ABCD﹣A1B1C1D1中,E为AB中点,F为正方形BCC1B1的中心. (1)求直线EF与平面ABCD所成角的正切值; (2)求异面直线A1C与EF所成角的余弦值.
甲、乙两校各有3名教师报名支教,期中甲校2男1女,乙校1男2女. (Ⅰ)若从甲校和乙校报名的教师中各任选1名,写出所有可能的结果,并求选出的2名教师性别相同的概率; (Ⅱ)若从报名的6名教师中任选2名,写出所有可能的结果,并求选出的2名教师来自同一学校的概率.
已知函数. (1)求f(x)的最大值和最小正周期; (2)若f()=,α是第二象限的角,求sin2α.