袋子A和B中装有若干个均匀的红球和白球,从A中摸出一个红球的概率是,从B中摸出一个红球的概率为p. (Ⅰ) 从A中有放回地摸球,每次摸出一个,有3次摸到红球即停止.(i)求恰好摸5次停止的概率;(ii)记5次之内(含5次)摸到红球的次数为,求随机变量的分布率及数学期望E. (Ⅱ) 若A、B两个袋子中的球数之比为12,将A、B中的球装在一起后,从中摸出一个红球的概率是,求p的值.
(本小题满分14分) 某地区有小学21所,中学14所,大学7所,现采用分层抽样的方法从这些学校中抽取6所学校对学生进行视力调查. (1)求应从小学、中学、大学中分别抽取的学校数目; (2)若从抽取的6所学校中随机抽取2所学校做进一步数据分析. (ⅰ)列出所有可能的抽取结果; (ⅱ)求抽取的2所学校均为小学的概率.
(本小题满分12分)如下图,给出了一个程序框图,其作用是输入的值,输出相应的的值, (I)请指出该程序框图所使用的逻辑结构; (Ⅱ)若视为自变量,为函数值,试写出函数的解析式; (Ⅲ)若要使输入的的值与输出的的值相等,则输入的值的集合为多少?
(本小题满分12分) 某车间为了规定工时定额,需要确定加工零件所花费的时间,为此作四次试验,得到的数据如下:
(1)已知零件个数与加工时间线性相关,求出y关于x的线性回归方程; (2)试预测加工10个零件需要多少时间?
(本小题满分12分)口袋中装有除编号外其余完全相同的5个小球,编号依次为1,2,3,4,5.现从中同时取出两个球,分别记录下其编号为m,n(其中m<n). (1)用(m,n)表示抽取结果,列出所有可能的抽取结果; (2)求“”的概率; (3)求“”的概率.
(本小题满分12分) 如图所示的茎叶图记录了甲、乙两个小组(每小组4人)在期末考试中的数学成绩.乙组记录中有一个数据模糊,无法确认,在图中以表示.已知甲、乙两个小组的数学成绩的平均分相同. (1)求的值; (2)求甲、乙两个小组数学成绩的方差,并说明哪个小组的成绩相对比较稳定; 参考公式: