袋子A和B中装有若干个均匀的红球和白球,从A中摸出一个红球的概率是,从B中摸出一个红球的概率为p. (Ⅰ) 从A中有放回地摸球,每次摸出一个,有3次摸到红球即停止.(i)求恰好摸5次停止的概率;(ii)记5次之内(含5次)摸到红球的次数为,求随机变量的分布率及数学期望E. (Ⅱ) 若A、B两个袋子中的球数之比为12,将A、B中的球装在一起后,从中摸出一个红球的概率是,求p的值.
设函数,,记 (1)求曲线在处的切线方程; (2)求函数在上的最值.
扶余市为“市中学生知识竞赛”进行选拔性测试,且规定:成绩大于或等于分的有参赛资格,分以下(不包括分)的则被淘汰。若现有人参加测试,学生成绩的频率分布直方图如下: (1)求获得参赛资格的人数; (2)根据频率分布直方图,估算这名学生测试的平均成绩.
(本小题满分14分)已知圆经过点A(-2,0),B(0,2),且圆心在直线y=x上,又直线l:y=kx+1与圆相交于P、Q两点. (1)求圆的方程; (2)若,求实数k的值; (3)过点作动直线交圆于,两点.试问:在以为直径的所有圆中,是否存在这样的圆,使得圆经过点?若存在,求出圆的方程;若不存在,请说明理由.
(本小题满分13分)受轿车在保修期内维修费等因素的影响,企业生产每辆轿车的利润与该轿车首次出现故障的时间有关,某轿车制造厂生产甲、乙两种品牌轿车,保修期均为2年,现从该厂已售出的两种品牌轿车中随机抽取50辆,统计数据如下:
将频率视为概率,解答下列问题: (1)从该厂生产的甲品牌轿车中随机抽取一辆,求首次出现故障发生在保修期内的概率; (2)若该厂生产的轿车均能售出,记生产一辆甲品牌轿车的利润为,生产一辆乙品牌轿车的利润为,分别求的分布列; (3)该厂预计今后这两种品牌轿车销量相当,由于资金限制,只能生产其中一种品牌轿车,若从生产一辆品牌轿车的利润均值的角度考虑,你认为应该生产哪种品牌的轿车?说明理由.
(本小题满分12分)已知关于的一元二次函数 (1)若分别表示将一枚质地均匀的骰子先后抛掷两次时第一次、第二次正面朝上出现的点数,求满足函数在区间[上是增函数的概率; (2)设点(,)是区域内的随机点,求函数上是增函数的概率.