袋子A和B中装有若干个均匀的红球和白球,从A中摸出一个红球的概率是,从B中摸出一个红球的概率为p. (Ⅰ) 从A中有放回地摸球,每次摸出一个,有3次摸到红球即停止.(i)求恰好摸5次停止的概率;(ii)记5次之内(含5次)摸到红球的次数为,求随机变量的分布率及数学期望E. (Ⅱ) 若A、B两个袋子中的球数之比为12,将A、B中的球装在一起后,从中摸出一个红球的概率是,求p的值.
已知的两个顶点的坐标分别,且所在直线的斜率之积为,1)求顶点的轨迹.2)当时,记顶点的轨迹为,过点能否存在一条直线,使与曲线交于两点,且为线段的中点,若存在求直线的方程,若不存在说明理由.
设命题:直线有两个公共点,命题:方程表示双曲线,若且为真,求实数的取值范围.
已知是圆上满足条件的两个点,其中是坐标原点,分别过作轴的垂线段,交椭圆于点,动点满足 (I)求动点的轨迹方程. (II)设分别表示和的面积,当点在轴的上方,点在轴的下方时,求的最大面积.
如图,正方形所在平面与圆所在平面相交于,线段为圆的弦,垂直于圆所在平面,垂足是圆上异于的点,,圆的直径为, 1)求证:平面平面2)求二面角的平面角的正切值.
若抛物线的焦点与椭圆的上焦点重合, 1)求抛物线方程. 2)若是过抛物线焦点的动弦,直线是抛物线两条分别切于的切线,求的交点的纵坐标.