已知曲线C的极坐标方程为,以极点为坐标原点,极轴为x轴正半轴建立平面直角坐标系,直线的参数方程为(t为参数).(Ⅰ)把曲线C的极坐标方程化为直角坐标方程,把直线的参数方程化为普通方程;(Ⅱ)求直线被曲线C截得的线段AB的长.
设函数,. (1)当时,求与函数图象相切且与直线平行的直线方程(2)求函数的单调区间(3)是否存在正实数,使对一切正实数都成立?若存在,求出的取值范围;若不存在,请说明理由.
已知函数的定义域为,对任意实数,都有成立,且当时,有,试判断函数的奇偶性和单调性,并证明你的结论
记函数f(x)=的定义域为A,g(x)=lg的定义域为B(1)求A;(2)若BA,求实数a的取值范围.
设函数,其中(1)求的单调增区间(2)对任意的正整数,证明:
某射手每次射击击中目标的概率是,且各次射击的结果互不影响.(Ⅰ)假设这名射手射击5次,求恰有2次击中目标的概率(Ⅱ)假设这名射手射击5次,求有3次连续击中目标,另外2次未击中目标的概率(Ⅲ)假设这名射手射击3次,每次射击,击中目标得1分,未击中目标得0分,在3次射击中,若有2次连续击中,而另外1次未击中,则额外加1分;若3次全击中,则额外加3分,记ξ为射手射击3次后的总得分数,求ξ的分布列