已知数列{an}满足条件: a1=1,a2=r(r>0),且{anan+1}是公比为q(q>0)的等比数列,设bn=a2n-1+a2n(n=1,2,…).(1)求出使不等式anan+1+an+1an+2>an+2an+3(n∈N*)成立的q的取值范围;(2)求bn和,其中Sn=b1+b2+…+bn;(3)设r=219.2-1,q=,求数列{}的最大项和最小项的值.
已知函数,其中是自然对数的底数. (Ⅰ)证明:是上的偶函数; (Ⅱ)若关于的不等式在上恒成立,求实数的取值范围; (Ⅲ)已知正数满足:存在,使得成立,试比较与的大小,并证明你的结论.
设函数(为常数,其中e是自然对数的底数) (Ⅰ)当时,求函数的极值点; (Ⅱ)若函数在内存在两个极值点,求的取值范围.
设且,已知函数是奇函数 (Ⅰ)求实数的值; (Ⅱ)求函数的单调区间; (Ⅲ)当时,函数的值域为,求实数的值.
已知函数. (Ⅰ)求在区间上的最大值; (Ⅱ)若过点存在条直线与曲线相切,求的取值范围.
设命题:函数的定义域为;命题:不等式对一切均成立。 (Ⅰ)如果是真命题,求实数的取值范围; (Ⅱ)如果命题“或”为真命题,且“且”为假命题,求实数的取值范围.