设数列{an}的前n项和为Sn,且Sn=(m+1)-man 对任意正整数n都成立,其中m为常数,且m<-1.(1)求证:{an}是等比数列;(2)设数列{an}的公比q=f(m),数列{bn}满足:b1=a1,bn=f(bn-1)(n≥2,n∈N*). 试问当m为何值时,成立?
已知a=,c=2,B=150°,求边b的长及
设函数是定义在上的减函数,并且满足,, (1)求,,的值, (2)如果,求x的取值范围。
(满分12分) 某商店按每件80元的价格,购进商品1000件(卖不出去的商品将成为废品);市场调研推知:当每件售价为100元时,恰好全部售完;当售价每提高1元时,销售量就减少5件;为获得最大利润,商店决定提高售价元,获得总利润元. (1)请将表示为的函数; (2)当售价为多少时,总利润取最大值,并求出此时的利润.
函数是R上的偶函数,且当时,函数的解析式为 (1)求的值; (2)用定义证明在上是减函数; (3)求当时,函数的解析式;
已知二次函数的图象如图所示. (1)写出该函数的零点; (2)写出该函数的解析式. (3)求当x∈时,函数的值域.