甲乙两人进行一种游戏,两人同时随机地喊出杠、虎、鸡、虫,按照杠打虎、虎吃鸡、鸡捉虫、虫啃杠的原则决定胜负,(比如甲喊杠的同时,乙若喊虎则乙输,乙若喊虫则乙嬴,乙若喊杠或鸡则不分胜负。)若两人同时喊出一次后不分胜负则继续喊下去,直到分出胜负(I)喊一次甲就获胜的概率是多少?(II)甲在喊不超过三次的情况下就获胜的概率是多少?
(本小题满分14分)已知函数定义域为. (1)若时,在上有最小值,求的取值范围; (2)若时,的值域为,试求的值; (3)试证:对任意实数,,总存在,使得当时,恒有
(本小题满分13分)已知椭圆:的离心率为,过右焦点的直线与相交于,两点,当的斜率为时,坐标原点到的距离为. (1)求椭圆的标准方程; (2)上是否存在点,使得当绕转到某一位置时,有成立?若存在,求出所有的的坐标与的方程;若不存在,说明理由,
(本小题满分12分)已知为数列的前项和,且,,,… (1)求证:数列为等比数列: (2)设,求数列的前项和.
(本小题满分12分)如图,在四棱锥中,底面,是直角梯形,,,,是的中点. (1)求证;平面平面; (2)若二面角的余弦值为,求直线与平面所成角的正弦值.
(本小题满分12分)口袋中装有除颜色,编号不同外,其余完全相同的2个红球,4个黑球,现从中同时取出3个球. (1)求恰有两个黑球的概率; (2)记取出红球的个数为随机变量,求的分布列和数学期望.