在月份,有一新款服装投入某商场销售,月日该款服装仅销售出件,第二天售出件,第三天销售件,然后,每天售出的件数分别递增件,直到日销售量达到最大后,每天销售的件数分别递减件,到月底该服装共销售出件.(Ⅰ)问月几号该款服装销售件数最多?其最大值是多少?(Ⅱ)按规律,当该商场销售此服装超过件时,社会上就流行,而日销售量连续下降,并低于件时,则流行消失,问该款服装在社会上流行是否超过天?并说明理由。
已知函数.(1)当时,解不等式;(2)若不等式恒成立,求实数的取值范围.
已知圆的极坐标方程为,直线的参数方程为(为参数),点的极坐标为,设直线与圆交于点、.(1)写出圆的直角坐标方程;(2)求的值.
已知,为圆的直径,为垂直的一条弦,垂足为,弦交于.(1)求证:、、、四点共圆;(2)若,求线段的长.
已知函数.(1)当 时,求在处的切线方程;(2)设函数,(ⅰ)若函数有且仅有一个零点时,求的值;(ⅱ)在(ⅰ)的条件下,若,,求的取值范围.
已知、为椭圆的左右焦点,点为其上一点,且有.(1)求椭圆的标准方程;(2)过的直线与椭圆交于、两点,过与平行的直线与椭圆交于、两点,求四边形的面积的最大值.