在月份,有一新款服装投入某商场销售,月日该款服装仅销售出件,第二天售出件,第三天销售件,然后,每天售出的件数分别递增件,直到日销售量达到最大后,每天销售的件数分别递减件,到月底该服装共销售出件.(Ⅰ)问月几号该款服装销售件数最多?其最大值是多少?(Ⅱ)按规律,当该商场销售此服装超过件时,社会上就流行,而日销售量连续下降,并低于件时,则流行消失,问该款服装在社会上流行是否超过天?并说明理由。
已知函数,且是函数的一个极值点. (1)求的值; (2)求函数的单调区间; (3)设,当函数在区间上零点的个数为0个,3个时,实数的取值范围分别为多少?(参考数据:,)
若等比数列{}的前n项和为,已知对任意的,点,均在函数(为常数)的图像上. (1)求和的值; (2)记,求数列的前项和
如图,四棱锥P-ABCD中,PA⊥底面ABCD,AB⊥AD,点E在线段AD上,且CE∥AB。 (1)求证:CE⊥平面PAD; (2)若PA=AB=1,AD=3,CD= ,∠CDA=45°,求四棱锥P-ABCD的体积
.已知等差数列满足:数列的前n项和为. (1)求及; (2)令,求数列的前n项和.
如图,在四棱锥中,,四边形为平行四边形,,, (1)若为中点,求证:∥平面 (2)求三棱锥的体积