在月份,有一新款服装投入某商场销售,月日该款服装仅销售出件,第二天售出件,第三天销售件,然后,每天售出的件数分别递增件,直到日销售量达到最大后,每天销售的件数分别递减件,到月底该服装共销售出件.(Ⅰ)问月几号该款服装销售件数最多?其最大值是多少?(Ⅱ)按规律,当该商场销售此服装超过件时,社会上就流行,而日销售量连续下降,并低于件时,则流行消失,问该款服装在社会上流行是否超过天?并说明理由。
(本小题满分14分)已知二次函数.(1)若,试判断函数零点个数;(2)若对且,,试证明,使成立。(3)是否存在,使同时满足以下条件①对,且;②对,都有。若存在,求出的值,若不存在,请说明理由。
(本小题满分14分)某厂家拟在2009年举行促销活动,经调查测算,该产品的年销售量(即该厂的年产量)x万件与年促销费用万元()满足(k为常数),如果不搞促销活动,则该产品的年销售量只能是1万件.已知2009年生产该产品的固定投入为8万元,每生产1万件该产品需要再投入16万元,厂家将每件产品的销售价格定为每件产品年平均成本的1.5倍(产品成本包括固定投入和再投入两部分资金,不包括促销费用). (1)将2009年该产品的利润y万元表示为年促销费用万元的函数; (2)该厂家2009年的促销费用投入多少万元时,厂家的利润最大?
(本小题满分14分)已知函数,若在=1处的切线方程为。 (1) 求的解析式及单调区间; (2) 若对任意的都有≥成立,求函数=的最值。
(本小题满分13分)在中,三边长分别为.(1)求的值;(2)求的值.
(本小题满分13分)已知全集,集合,,.(1)求; (2)若,求、的值.(3)若一个根在区间内,另一根在区间内,求的取值范围.