已知函数(为实常数).(Ⅰ) 若,求证:函数在上是增函数;(Ⅱ) 求函数在上的最小值及相应的值;(Ⅲ) 若存在,使得成立,求实数的取值范围.
设,求函数的最大值与最小值。
求函数的最小值和最大值。
(Ⅰ)设函数,求的最小值;(Ⅱ)设正数满足,证明
甲、乙等五名志愿者被随机地分到四个不同的岗位服务,每个岗位至少有一名志愿者.(Ⅰ)求甲、乙两人同时参加岗位服务的概率;(Ⅱ)设随机变量为这五名志愿者中参加岗位服务的人数,求的分布列.
已知圆C的极坐标方程是,以极点为平面直角坐标系的原点,极轴为x轴的正半轴,建立平面直角坐标系,直线的参数方程是(t是参数)。若直线与圆C相切,求实数m的值。