(本小题满分16分)函数其中为常数,且函数和的图像在其与坐标轴的交点处的切线互相平行(1)、求函数的解析式(2)、若关于的不等式恒成立,求实数的取值范围。
已知抛物线D的顶点是椭圆的中心,焦点与该椭圆的右焦点重合。(1)求抛物线D的方程;(2)已知动直线l过点P(4,0),交抛物线D于A,B两点(i)若直线l的斜率为1,求AB的长;(ii)是否存在垂直于x轴的直线m被以AP为直径的圆M所截得的弦长恒为定值?如果存在,求出m的方程,如果不存在,说明理由。
在直三棱柱ABC-A1B1C1中,△ABC为等腰三角形,∠BAC=90°,且AB=AA1,E、F分别为C1C、BC的中点。(1)求证:B1F⊥平面AEF(2)求二面角B1-AE-F的余弦值。
某种有奖销售的饮料,瓶盖内印有“奖励一瓶”或“谢谢购买”字样,购买一瓶若其瓶盖内印有“奖励一瓶”字样即为中奖,中奖概率为。甲、乙、丙三位同学每人购买了一瓶该饮料。(1)求甲中奖且乙、丙没有中奖的概率;(2)求中奖人数的分布列及数学期望E。
f(x)=sin2x+(>0),且函数y=f(x)的图象相邻两条对称轴之间的距离为。(1)求的值及f(x)的单调递增区间;
已知是定义在上的奇函数,当时,(1)求的解析式;(2)是否存在负实数,使得当的最小值是4?如果存在,求出的值;如果不存在,请说明理由。(3)对如果函数的图像在函数的图像的下方,则称函数在D上被函数覆盖。求证:若时,函数在区间上被函数覆盖。