用秦九韶算法求多项式,当时的值.
已知函数.(为常数)(1)当时,求函数的最小值;(2)求函数在上的最值;(3)试证明对任意的都有
已知椭圆的离心率为,短轴的一个端点到右焦点的距离为2,(1)试求椭圆的方程;(2)若斜率为的直线与椭圆交于、两点,点为椭圆上一点,记直线的斜率为,直线的斜率为,试问:是否为定值?请证明你的结论
某造纸厂拟建一座平面图形为矩形且面积为162平方米的三级污水处理池,池的深度一定(平面图如图所示),如果池四周围墙建造单价为400元/米,中间两道隔墙建造单价为248元/米,池底建造单价为80元/米2,水池所有墙的厚度忽略不计.(1)试设计污水处理池的长和宽,使总造价最低,并求出最低总造价;(2)若由于地形限制,该池的长和宽都不能超过16米,试设计污水池的长和宽,使总造价最低.
在三棱锥中,和是边长为的等边三角形,,分别是的中点.(1)求证:∥平面;(2)求证:平面⊥平面;(3)求三棱锥的体积.
已知圆心在x轴正半轴的圆C经过A(2,0),且与双曲线的渐近线相切,求圆C的方程