已知命题: P:对任意,不等式恒成立;q:函数存在极大值和极小值。求使命题“p且q”为真命题的m的取值范围。
如图,在棱长为a的正方体ABCD—A1B1C1D1中,M、N分别是AA1、D1C1的中点,过D、M、N三点的平面与正方体的下底面相交于直线l;(1)画出直线l;(2)设l∩A1B1=P,求PB1的长;(3)求D到l的距离.
已知圆C:(x-1)2+y2=9内有一点P(2,2),过点P作直线l交圆C于A、B两点.(1)当l经过圆心C时,求直线l的方程;(2)当弦AB被点P平分时,写出直线l的方程;(3)当直线l的倾斜角为45°时,求弦AB的长.
已知⊙和点.(Ⅰ)过点向⊙引切线,求直线的方程;(Ⅱ)求以点为圆心,且被直线截得的弦长为4的⊙的方程;(Ⅲ)设为(Ⅱ)中⊙上任一点,过点向⊙引切线,切点为. 试探究:平面内是否存在一定点,使得为定值?若存在,请举出一例,并指出相应的定值;若不存在,请说明理由.
已知数列,其中是首项为1,公差为1的等差数列;是公差为的等差数列;是公差为的等差数列().(1)若,求;(2)试写出关于的关系式,并求的取值范围;(3)续写已知数列,使得是公差为的等差数列,……,依次类推,把已知数列推广为无穷数列. 提出同(2)类似的问题((2)应当作为特例),并进行研究,你能得到什么样的结论?
已知函数的最大值为正实数,集合,集合。(1)求和;(2)定义与的差集:且。设,,均为整数,且。为取自的概率,为取自 的概率,写出与的二组值,使,。(3)若函数中,, 是(2)中较大的一组,试写出在区间[,n]上的最 大值函数的表达式。