某种汽车的购车费用是10万元,每年使用的保险费、养路费、汽油费约为万元,年维修费用第一年是万元,以后逐年递增万元。问这种汽车使用多少年时,它的年平均费用最小?最小值是多少?
(本小题满分12分)已知中,角、、所对的边分别为、、,,. (1)求的值;(2)若,求的面积.
(本小题满分16分) 一个三角形数表按如下方式构成:第一行依次写上n(n≥4)个数,在上一行的每相邻两数的中间正下方写上这两数之和,得到下一行,依此类推.记数表中第i行的第j个数为f(i,j).(1)若数表中第i (1≤i≤n-3)行的数依次成等差数列,求证:第i+1行的数也依次成等差数列;(2)已知f(1,j)=4j,求f(i,1)关于i的表达式;(3)在(2)的条件下,若f(i,1)=(i+1)(ai-1),bi= ,试求一个函数g(x),使得Sn=b1g(1)+b2g(2)+…+bng(n)<,且对于任意的m∈(,),均存在实数,使得当时,都有Sn >m.
(本小题满分16分)某厂生产某种产品的年固定成本为万元,每生产()千件,需另投入成本为,当年产量不足千件时,(万元);当年产量不小于千件时,(万元).通过市场分析,若每千件售价为万元时,该厂年内生产该商品能全部销售完. (1)写出年利润(万元)关于年产量(千件)的函数解析式;(2)年产量为多少千件时,该厂在这一商品的生产中所获利润最大.
(本小题满分15分)如图,斜三棱柱ABC—A1B1C1中,A1C1⊥BC1,AB⊥AC,AB=3,AC=2,侧棱与底面成60°角.(1)求证:AC⊥面ABC1;(2)求证:C1点在平面ABC上的射影H在直线AB上;(3)求此三棱柱体积的最小值.
(本小题满分15分)已知公差大于零的等差数列的前n项和为Sn,且满足:,. (1)求数列的通项公式;(2)若数列是等差数列,且,求非零常数c.