由原点向三次曲线引切线,切于不同于点的点,再由引此曲线的切线,切于不同于的点,如此继续地作下去,……,得到点列,试回答下列问题: ⑴求; (2)求与的关系式; (3)若,求证:当为正偶数时,;当为正奇数时,.
( 已知椭圆的中心为坐标原点O,椭圆短半轴长为1,动点在直线上。 (1)求椭圆的标准方程 (2)求以OM为直径且被直线截得的弦长为2的圆的方程; (3)设F是椭圆的右焦点,过点F作OM的垂线与以OM为直径的圆交于点N,求证:线段ON的长为定值,并求出这个定值。
( 如图,在三棱柱中,,顶点在底面上的射影恰为点B,且. (1)求棱与BC所成的角的大小; (2)在线段上确定一点P,使,并求出二面角的平面角的余弦值.
高三第一学期期末四校联考数学第I卷中共有8道选择题,每道选择题有4个选项,其中只有一个是正确的;评分标准规定:“每题只选一项,答对得5分,不答或答错得0分。”某考生每道题都给出一个答案,已确定有5道题的答案是正确的,而其余选择题中,有1道题可判断出两个选项是错误的,有一道可以判断出一个选项是错误的,还有一道因不了解题意只能乱猜,试求出该考生: (1)得40分的概率 (2)得多少分的可能性最大? (3)所得分数的数学期望
本题满分12分) 在三角形ABC中,∠A,∠B,∠C的对边分别为且 (1)求∠A; (2)若,求的取值范围。
《几何证明选讲》选做题: 如图,圆的直径,为圆周上一点,,过作圆的切线,过作直线的垂线,为垂足,与圆交于点,则线段的长为 .