(13分) 已知曲线C:的横坐标分别为1和,且a1=5,数列{xn}满足xn+1 = tf (xn – 1) + 1(t > 0且).设区间,当时,曲线C上存在点使得xn的值与直线AAn的斜率之半相等.(1) 证明:是等比数列;(2) 当对一切恒成立时,求t的取值范围;(3) 记数列{an}的前n项和为Sn,当时,试比较Sn与n + 7的大小,并证明你的结论.
某次演唱比赛,需要加试文化科学素质,每位参赛选手需加答3个问题,组委会为每位选手都备有10道不同的题目可供选择,其中有5道文史类题目,3道科技类题目,2道体育类题目,测试时,每位选手从给定的10道题中不放回地随机抽取3次,每次抽取一道题,回答完该题后,再抽取下一道题目作答.(1)求某选手第二次抽到的不是科技类题目的概率;(2)求某选手抽到体育类题目数的分布列和数学期望E
已知向量,且与向量的夹角为,其中是的内角. (1)求角的大小; (2)求的取值范围.
已知双曲线的左顶点为,右焦点为,为双曲线右支上一点。(1)求的最小值;(2)若直线为圆上动点处的切线,且与双曲线交于不同的两个点,证明为直角三角形。
已知函数在上是增函数,在上为减函数.(1)求的表达式;(2)当时,若在内恒成立,求的取值范围.
设,令,又。(1)求数列的通项公式; (2)求数列的前项和。