研究人员选取170名青年男女大学生的样本,对他(她)们进行一种心理测验,发现有60名女生对该心理的最后一个题目的反应是:作肯定的18名,否定42名;男生110名在相同的项目上作出肯定的有22名,否定的有88名.请问性别与态度之间是否存在某种关系?请分别用图形与独立性检验的方法进行判断.
(本小题满分13分)已知数列的前项和为,且(其中是不为零的常数),. (Ⅰ)证明:数列是等比数列; (Ⅱ)当=1时,数列求数列的通项公式.
(本小题满分13分) 某大学志愿者协会有10名同学,成员构成如下表,其中表中部分数据不清楚,只知道从这10名同学中随机抽取一位,抽到该名同学为“数学专业”的概率为.
(Ⅰ)求的值; (Ⅱ)现从男同学中随机选取2名同学,进行社会公益活动(每位同学被选到的可能性相同),求选出的这2名男同学中至少有一位同学是“数学专业”的概率.
(本小题满分13分)在中,角所对的三边分别为,,且 (Ⅰ)求; (Ⅱ)求的面积.
(本小题满分13分)如图,在一个可以向下和向右方无限延伸的表格中,将正偶数按已填好的各个方格中的数字显现的规律填入各方格中.其中第行,第列的数记作,,如.
(Ⅰ)写出的值; (Ⅱ)若求的值;(只需写出结论) (Ⅲ)设,(), 记数列的前项和为,求;并求正整数,使得对任意,均有.
(本小题满分14分)已知椭圆:,右焦点,点在椭圆上. (Ⅰ)求椭圆的标准方程; (Ⅱ)已知直线与椭圆交于两点,为椭圆上异于的动点. (1)若直线的斜率都存在,证明:; (2)若,直线分别与直线相交于点,直线与椭圆相交 于点(异于点), 求证:,,三点共线.