一艘轮船在航行中的燃料费和它的速度的立方成正比,已知在速度为每小时10公里时的燃料费是每小时6元,而其他与速度无关的费用是每小时96元,问此轮船以何种速度航行时,能使行驶每公里的费用总和最小?
求垂直于直线并且与曲线相切的直线方程。
计算:(1 +2 i)·(3 – 4i)
在中,满足,是边上的一点. (Ⅰ)若,求向量与向量夹角的正弦值; (Ⅱ)若,=m (m为正常数) 且是边上的三等分点.,求值; (Ⅲ)若且求的最小值。
已知函数, (Ⅰ)求函数的单调递减区间; (Ⅱ)令函数(),求函数的最大值的表达式;
设f (x)=sin 2x+(sin x-cos x)(sin x+cos x),其中x∈R. (Ⅰ) 该函数的图象可由的图象经过怎样的平移和伸缩变换得到? (Ⅱ)若f (θ)=,其中,求cos(θ+)的值;