甲、乙两名篮球队员独立地轮流投篮,甲投中的概率为0.4,乙投中的概率为0.6,甲先投,直至有人投中为止,甲队员投球次数为随机变量,求的分布列。
设(1)求点的轨迹C的方程;(2)过点的直线交曲线C于A,B两点(A在P,B之间),设直线的斜率为k,当时,求实数的取值范围。
已知是定义在上的函数,且满足下列条件:①对任意的,;②当时,.(1)证明是定义在上的减函数;(2)如果对任意实数,有恒成立,求实数的取值范围。
已知平面区域恰好被面积最小的圆及其内部所覆盖.(1)试求圆的方程.(2)若斜率为1的直线与圆C交于不同两点满足,求直线的方程.
在中,A、B、C为它的三个内角,设向量且与的夹角为.(Ⅰ)求角的大小; (Ⅱ) 已知,求的值.
在 ∆ A B C 中, sin C - A = 1 , sin B = 1 3 .
(1)求 sin A 的值;
(2)设 A C = 6 ,求 ∆ A B C 的面积.