(本小题满分13分)如图,已知菱形的边长为,,.将菱形沿对角线折起,使,得到三棱锥.(Ⅰ)若点是棱的中点,求证:平面;(Ⅱ)求二面角的余弦值;(Ⅲ)设点是线段上一个动点,试确定点的位置,使得,并证明你的结论.
已知中心在原点,焦点在轴上的椭圆与轴的负半轴交于点,与轴的正半轴交于点,是左焦点且到直线的距离,求椭圆的离心率.
设函数,如果当时总有意义,求的取值范围.
求和:.
若,且,求实数.
如图,空间四边形的对棱的角,且,平行于与 的截面分别交于. (1)求证:四边形为平行四边形; (2)在边的何处时截面的面积最大?