如图,是单位圆与轴正半轴的交点,点在单位圆上, ,四边形的面积为(Ⅰ)求的最大值及此时的值;(Ⅱ)设点的坐标为,,在(Ⅰ)的条件下,求
如图所示,已知长方体ABCD—A1B1C1D1中,AB=BC=2,AA1=4,E是棱CC1上的点,且BE⊥B1C.(1)求CE的长;(2)求证:A1C⊥平面BED;(3)求A1B与平面BDE所成角的正弦值.
如图所示,在三棱锥P—ABC中,AB⊥BC,AB=BC=kPA,点O、D分别是AC、PC的中点,OP⊥底面ABC.(1)若k=1,试求异面直线PA与BD所成角余弦值的大小;(2)当k取何值时,二面角O—PC—B的大小为?
如图所示,在三棱柱ABC—A1B1C1中,四边形A1ABB1是菱形,四边形BCC1B1是矩形,AB⊥BC,CB=3,AB=4,∠A1AB=60°.(1)求证:平面CA1B⊥平面A1ABB1;(2)求直线A1C与平面BCC1B1所成角的正切值;(3)求点C1到平面A1CB的距离.
如图所示,在几何体ABCDE中,△ABC是等腰直角三角形,∠ABC=90°,BE和CD都垂直于平面ABC,且BE=AB=2,CD=1,点F是AE的中点.求AB与平面BDF所成角的正弦值.
在五棱锥P—ABCDE中,PA=AB=AE=2a,PB=PE=2a,BC=DE=a,∠EAB=∠ABC=∠DEA=90°.(1)求证:PA⊥平面ABCDE;(2)求二面角A—PD—E的余弦值.