已知函数,.(I)设是函数图象的一条对称轴,求的值.(II)求函数的单调递增区间.
(本小题满分12分)编号为的16名篮球运动员在某次训练比赛中的得分记录如下:
(Ⅰ)将得分在对应区间内的人数填入相应的空格;
(Ⅱ)从得分在区间内的运动员中随机抽取2人,(i)用运动员的编号列出所有可能的抽取结果;(ii)求这2人得分之和大于50的概率.
(本小题满分12分)如图,四棱锥中,底面ABCD为平行四边形,,,底面ABCD.(I)证明:;(II)设PD=AD=1,求棱锥D-PBC的高.
(本小题满分12分)已知等比数列中,,公比.(I)为的前n项和,证明:(II)设,求数列的通项公式.
(满分14分)设函数.若方程的根为0和2,且.(1). 求函数的解析式;(2) 已知各项均不为零的数列满足:为该数列的前n项和),求该数列的通项;(3)如果数列满足.求证:当时,恒有成立.
(满分14分)设函数.(1)求的单调区间;(2)若当时,(其中不等式恒成立,求实数m的取值范围;(3)试讨论关于x的方程:在区间[0,2]上的根的个数.