设表示不超过的最大整数(如,),对于给定的N*,定义,求当时,函数的值域
(1)在等差数列中,d=2,n=15,求及 (2)已知,都是正数,并且,求证:
已知, (1)若是等差数列,且首项是展开式的常数项的,公差d为展开式的各项系数和①求②找出与的关系,并说明理由。 (2)若,且数列满足,求证:是等比数列。
如图,已知AB⊥平面ACD,DE//AB,△ACD是正三角形,DE =2AB=2,且F是CD的中点。 (Ⅰ)求证:AF//平面BCE; (Ⅱ)求证:平面BCE⊥平面CDE; (Ⅲ)设,当为何值时?使得平面BCE与平面ACD所成的二面角的大小为。
已知圆的方程,从0,3,4,5,6,7,8,9,10这九个数中选出3个不同的数,分别作圆心的横坐标、纵坐标和圆的半径。问: (1)可以作多少个不同的圆? (2)经过原点的圆有多少个? (3)圆心在直线上的圆有多少个?
如图, 在正方体ABCD—A1B1C1D1中,E、F分别是CC1、AA1的中点.AA1=2. (1)求异面直线AE与BF所成角的余弦值; (2)求点F到平面ABC1D1的距离;