已知向量p=(an,2n),向量q=(2n+1,-an+1),n∈N*,向量p与q垂直,且a1=1.(1)求数列{an}的通项公式;(2)若数列{bn}满足bn=log2an+1,求数列{an·bn}的前n项和Sn.
如图,在等腰直角△OPQ中,∠POQ=90°,OP=2,点M在线段PQ上.(1)若OM=,求PM的长;(2)若点N在线段MQ上,且∠MON=30°,问:当∠POM取何值时,△OMN的面积最小?并求出面积的最小值.
在△ABC中,角A,B,C的对边分别为a,b,c,若acos2+ccos2=b.(1)求证:a,b,c成等差数列;(2)若∠B=60°,b=4,求△ABC的面积.
已知函数f(x)=2sin xcos x+cos 2x(x∈R).(1)当x取什么值时,函数f(x)取得最大值,并求其最大值;(2)若θ为锐角,且f=,求tan θ的值.
已知角α的顶点在原点,始边与x轴的正半轴重合,终边经过点P(-3,).(1)求sin 2α-tan α的值;(2)若函数f(x)=cos(x-α)cos α-sin(x-α)sin α,求函数y=f-2f2(x)在区间上的值域.