已知点的坐标分别是,,直线相交于点M,且它们的斜率之积为.(1)求点M轨迹的方程;(2)若过点的直线与(1)中的轨迹交于不同的两点、(在、之间),试求与面积之比的取值范围(为坐标原点).
(本题满分14分,第(1)小题6分,第(2)小题8分)四棱锥P-ABCD中,PD⊥平面ABCD,PA与平面ABCD所成的角为60,在四边形ABCD中,∠ADC=∠DAB=90,AB=4,CD=1,AD=2.(1)求四棱锥P-ABCD的体积;(2)求异面直线PA与BC所成的角.
(本题满分12分,第(1)小题5分,第(2)小题7分)已知锐角△ABC中,三个内角为A、B、C,向量=2-2,+,=-,1+,∥.(1)求∠A的大小;(2)求函数=2+取得最大值时,∠B的大小.
已知椭圆的中心在原点,焦点在x轴上,离心率为,过点与椭圆交于两点.(1)若直线的斜率为1,且,求椭圆的标准方程;(2)若(1)中椭圆的右顶点为,直线的倾斜角为,问为何值时,取得最大值,并求出这个最大值.
设函数(1)若,①求的值;②在;(2)当上是单调函数,求的取值范围。(参考数据
已知点,直线相交于点,且它们的斜率之积为,(1)求动点的轨迹的方程;(2)若过点的直线与曲线交于两点,且,求直线的方程.