(本小题共14分)已知直三棱柱的所有棱长都相等,且分别为的中点.(Ⅰ) 求证:平面平面;(Ⅱ)求证:平面.
.(本小题满分14分)某校从参加高一年级期末考试的学生中抽出60名学生,将其成绩(均为整数)分成六段,…后画出如下部分频率分布直方图.观察图形的信息,回答下列问题:(1)求第四小组的频率,并补全这个频率分布直方图;(2)估计这次考试的及格率(60分及以上为及格)和平均分;(3)用分层抽样的方法从成绩是80分以上(包括80分)的学生中抽取了6人进行试卷分析,再从这6个人中选2人作学习经验介绍发言,求选出的2人中至少有1人在的概率.
(本小题满分12分)在中,角所对的边分别为且满足(I)求角的大小;(II)求的最大值,并求取得最大值时角的大小.
. (满分12分)矩形ABCD的对角线AC、BD相交于点M (2,0),AB边所在直线的方程为:.若点在直线AD上.(1)求点A的坐标及矩形ABCD外接圆的方程;(2)过直线上一点P作(1)中所求圆的切线,设切点为E、F,求四边形PEMF面积的最小值,并求此时的值.
(满分12分)已知函数是定义在R上的奇函数.(1)求的值;(2)判断在R上的单调性并用定义证明; (3)若对恒成立,求实数k的取值范围.