设解不等式:
已知奇函数 (1)求实数的值,并在给出的直角坐标系中画出的图象; (2)若函数在区间上单调递增,试确定实数的取值范围.
设集合,且. ⑴求的值; ⑵判断函数在的单调性,并用定义加以证明.
已知集合(),. (1)当时,求; (2)若,求实数的取值范围.
已知函数,,其中且. (Ⅰ)当,求函数的单调递增区间; (Ⅱ)若时,函数有极值,求函数图象的对称中心的坐标; (Ⅲ)设函数(是自然对数的底数),是否存在a使在上为减函数,若存在,求实数a的范围;若不存在,请说明理由.
设平面向量,,已知函数在上的最大值为6. (Ⅰ)求实数的值; (Ⅱ)若,.求的值.