如图,面积为的正方形中有一个不规则的图形,可按下面方法估计的面积:在正方形中随机投掷个点,若个点中有个点落入中,则的面积的估计值为,假设正方形的边长为2,的面积为1,并向正方形中随机投掷个点,以表示落入中的点的数目.(I)求的均值;(II)求用以上方法估计的面积时,的面积的估计值与实际值之差在区间内的概率.附表:
已知数列是等差数列,且,.(Ⅰ)求的通项;(Ⅱ)求前n项和的最大值.
数列为公差不为的等差数列,为前项和,和的等差中项为,且.令数列的前项和为.(Ⅰ)求及;(Ⅱ)是否存在正整数成等比数列?若存在,求出所有的的值;若不存在,请说明理由.
在中,内角A 、B、C对的边长分别是a、b、c.(1)若c=2,C=,且的面积是,求a,b的值;(2)若,试判断的形状.
已知数列的前项和,求
设锐角三角形ABC的内角A、B、C的对边分别为a、b、c,a=2bsinA.(1)求B的大小;(2)若a=3,c=5,求b.