已知函数. (Ⅰ)求的最小正周期;(Ⅱ)求当时,的最大值及最小值;(Ⅲ)求的单调递增区间.
已知 x = 3 是函数 f ( x ) = a ln ( 1 + x ) + x 2 - 10 x 的一个极值点.
(Ⅰ)求 a ;
(Ⅱ)求函数 f ( x ) 的单调区间;
(Ⅲ)若直线 y = b 与函数 y = f ( x ) 的图象有3个交点,求 b 的取值范围。
(本小题满分14分)已知椭圆,它的离心率为,直线与以原点为圆心,以椭圆的短半轴长为半径的圆相切.⑴求椭圆的方程;⑵设椭圆的左焦点为,左准线为,动直线垂直于直线,垂足为点,线段的垂直平分线交于点,求动点的轨迹的方程;⑶将曲线向右平移2个单位得到曲线,设曲线的准线为,焦点为,过作直线交曲线于两点,过点作平行于曲线的对称轴的直线,若,试证明三点(为坐标原点)在同一条直线上.
(本小题满分12分)等差数列的前项和为.⑴求数列的通项与前项和;⑵设,求证:数列中任意不同的三项都不可能成为等比数列.
(本小题满分12分)在四边形ABCD中, BD是它的一条对角线,且,,.⑴若△BCD是直角三形,求的值;⑵在⑴的条件下,求.
(本小题满分12分)如图,在四棱锥P—ABCD中,底面ABCD是正方形,侧棱PD⊥底面ABCD,PD=DC,E是PC的中点,作EF⊥PB交PB于点F.⑴证明PA//平面EDB;⑵证明PB⊥平面EFD;⑶求二面角C—PB—D的大小.