某地政府为科技兴市,欲在如图所示的矩形ABCD的非农业用地中规划出一个高科技工业园区(如图中阴影部分),形状为直角梯形QPRE(线段EQ和RP为两个底边),已知其中AF是以A为顶点、AD为对称轴的抛物线段.试求该高科技工业园区的最大面积.
设过原点的直线与圆:的一个交点为,点为线段的中点。 (1)求圆的极坐标方程; (2)求点轨迹的极坐标方程,并说明它是什么曲线.
已知为复数,为纯虚数,,且,求复数.
已知函数,,其中. (1)若是函数的极值点,求实数的值; (2)若对任意的(为自然对数的底数)都有≥成立,求实数的取值范围.
设函数f(x)=x2-mlnx,g(x)=x2-x+a. (1)当a=0时,f(x)≥g(x)在(1,+∞),上恒成立,求实数m的取值范围; (2)当m=2时,若函数h(x)=f(x)-g(x)在[1,3]上恰有两个不同的零点,求实数a的取值范围.
设f(x)=ax3+bx+c(a≠0)为奇函数,其图象在点(1,f(1))处的切线与直线x-6y-7=0垂直,导函数f′(x)的最小值为-12. (1)求函数f(x)的解析式; (2)求函数f(x)的单调增区间,并求函数f(x)在[-1,3]上的最大值和最小值.